
short communications

528 doi:10.1107/S0108767305020106 Acta Cryst. (2005). A61, 528–530

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 15 May 2005

Accepted 24 June 2005

# 2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

Polarization factors in the general case of three-
wave diffraction

Sergey Sheludko

Hof ter Lo 10 – 83, 2140 Borgerhout, Belgium. Correspondence e-mail: sergey.sheludko@telenet.be

The polarization properties of diffracted radiation depending on the geometry

of three-wave configurations and spectral and polarization states of the incident

radiation are considered on the basis of the representation of multiple

diffraction geometry in the natural crystallographic coordinates. The analytical

expressions, obtained earlier for the symmetric cases [Sheludko (2004). Acta

Cryst. A60, 281–282], are extended for the general case of three-wave diffraction

of radiation on single crystals. The problem of the description of conditions of

inverse asymmetry of three-wave diffraction profiles is reduced to a classical

analysis of quadratic and cubic equations.

1. Introduction

It has been shown recently by the author (Sheludko, 2004) that use of

a new geometrical model simplifies the problem of the analytical

description of polarization factors. It appears that, in the case of

symmetric three-wave diffraction, polarization interrelations can be

expressed by functions of only two variables, one of which is naturally

defined in crystallographic terms. In the present work, this approach

is extended to a general case of three-wave diffraction.

2. Definition of variables and geometrical conditions of
multiple diffraction

The adopted definitions of variables is based on three-dimensional

curvilinear orthogonal coordinates (�, �, �), previously proposed by

the author [Sheludko (2003); see also Korn & Korn (1968) for general

references]. This approach is perfectly applicable to the description of

geometrical conditions of multiple diffraction in the Renninger

experiment scheme [Renninger (1937); see also Chang (2004) and

references therein], i.e. where the effects of multiple diffraction are

observed as intensity perturbations of one (principal reflection) of the

two-wave reflections as a crystal rotates around the diffraction vector

H corresponding to this reflection. The suggested treatment is an

alternative with respect to the widely used vector approach given by

Cole et al. (1962). In the present communication, only a compact

account of the approach is presented.

In reciprocal space, coordinates �i, Ti and �i are assigned to each

reciprocal-lattice point Hi whose corresponding diffraction vector Hi

is not collinear with vector H. In addition to various definitions of

coordinate �i given earlier by Sheludko (2004), we can also deter-

mine it as an angle, with which from the point Hi one can see the O

and H end-points of the vector H. The diffraction vectors H, Hi and

H�i ¼ H�Hi, corresponding to principal, additional and coupling

reflections, respectively, compose a three-wave configuration, desig-

nated as H�Hi=H�i . The spatial position of the circumscribing circle

(circle of configuration) of the triangle OHH1 is defined by the

relative azimuthal coordinate �i of its center Li (see Fig. 1). The value

of this coordinate is also referred to each point of the circumference

with the exception of the singularity points O and H. The position

indeterminacy of the point Hi on the circle of configuration is

eliminated by the following definition of the third (bi-)polar coordi-

nate: Ti ¼ lnðjHij=jH
�
i jÞ ¼ lnðsin �i= sin ��i Þ, where �i and ��i are

the Bragg angles for additional and coupling reflections, respectively.

The coordinates of the center Li of the circle of configuration are

defined as Li ¼ Lið2��i ; 0;�iÞ, where ��i means the acute angle

defined by the condition cos ��i ¼ j cos �ij. To each ith three-wave

configuration H�Hi=H�i , there exists a conjugate configuration

H�H�i =Hi with center of circumference L�i and corresponding

reciprocal-lattice point H�i ¼ H�i ð�i;�Ti;�i � �Þ conjugate to point

Hi. In particular cases of multiple-wave configurations with �i = �/2,

i.e. when intrinsic multiple diffraction takes place, the two circum-

ferences coincide and their common center Lint is located at the point

that divides the segment OH in two. Such configurations can only be

of an even multiplicity as has been found earlier (Sheludko, 2004; see

also Burbank, 1965; Zachariasen, 1965).

Let a crystal be in the position of principal reflection with the

possibility of rotating around the vector H. The angle between

wavevectors K0 of incident and K of diffracted waves, respectively, in

Figure 1
Geometrical relations between diffraction vectors, wavevectors, the circle of
configuration and the circle of reflections. The coordinate plane z = z0 = 0 coincides
with the diffraction plane OHLo of the principal reflection.



the crystal is 2�, where � is the Bragg angle for the principal

reflection. For simplicity, we shall scale all vectors by replacing vx with

vx/|K0| so that all wavevectors normalized in such a way are desig-

nated by sx, with |sx| = 1 (here vx and sx are the placeholders for an

arbitrary vector and a unit wavevector, respectively). The normalized

Ewald sphere of unit radius can be circumscribed from the Lorentz

point Lo = Lo(2�, 0, 0). The bipolar coordinate system introduced

here can be imagined as two sets of � and � circumferences on the

surface of the Ewald sphere, which are mutually perpendicular at

each point of this surface (see Fig. 2).

Let us construct a circumference (circle of reflections) in the

coordinate plane � = 0 with segment LoLint = cos � as its diameter

(see Fig. 1) and the point Lref ¼ Lref½2 arctanð2 tan �Þ; 0; 0� as its

center. Completing the auxiliary constructions, we formulate the

following statement, whose rigorous proof is omitted for shortness.

Non-intrinsic multiple diffraction in a Renninger experiment scheme

takes place when, with the crystal rotating about the diffraction

vector of the principal reflection, the center Li of a circle of config-

uration moves onto the circle of reflections. The conditions of

intrinsic multiple diffraction, i.e. when the center of the circle of

configuration is permanently placed on the circle of the reflections,

consists in the mutual orthogonality of the configuration plane and

the diameter LoLint of the circle of reflections.

The problem of determination of multiple diffraction conditions is

reduced now to an elementary plane problem. Taking into consid-

eration that LiLint = sin �/tan �i, one obtains immediately the

expression for angular positions of multiple diffraction peaks on an

azimuthal scan plot:

’i ¼ � arccosðtan �= tan ��i Þ ��i � n�; ð1Þ

where n is even for the ith configuration and n is odd for the

conjugate one, say i�th, configuration.

We obtain as simply and clearly all the other geometrical relations

of multiple diffraction. In particular, the spectral condition of coin-

cidental multiple diffraction, i.e. when diffraction conditions are

accomplished simultaneously for two (say ith and jth) or more

systematic multiple-wave configurations, can be easily obtained in the

following analytical form:

cot � ¼ ðcot2 �i þ cot2 �j � 2 cot ��i cot ��j cos �ijÞ
1=2= sin �ij; ð2Þ

where �ij = �j � �i.

3. Analytical form of polarization factors and their
application

Now we can use the outcomes gained in the previous section for the

analysis of geometrical relations of a special kind – polarization

relations – between diffracted waves in the general case of three-wave

diffraction. We introduce an auxiliary Cartesian coordinate system

x0y0z0 with its origin at Lorentz point Lo and the axis x0 parallel to the

vector H (see Fig. 1) and write down the unit wavevectors s0 and s of

the incident and diffracted waves, respectively, as:

s0ðx
0; y0; z0Þ ¼ s0ð� sin �;� cos �; 0Þ ð3Þ

and

sðx0; y0; z0Þ ¼ sðsin �;� cos �; 0Þ: ð4Þ

The unit wavevector si of the additional reflection is then determined

as follows:

siðx
0; y0; y0Þ ¼ si

�
sin � sinh Ti

cosh Ti � cos �i

;
cos �i � cos2 � cosh Ti

cos �ðcosh Ti � cos �iÞ
;

�
sin �ðcos2 �� cos2 �iÞ

1=2

cos �ðcosh Ti � cos �iÞ

�
: ð5Þ

The unit polarization vectors for the two-wave case can be repre-

sented in one of the conventional forms (see, for example, Shen,

1986):

p0ðx
0; y0; z0Þ ¼ p0ð� cos �; sin �; 0Þ; ð6Þ

pðx0; y0; z0Þ ¼ pðcos �; sin �; 0Þ; ð7Þ

r0ðx
0; y0; z0Þ ¼ r0ð0; 0; 1Þ; ð8Þ

rðx0; y0; z0Þ ¼ rð0; 0;�1Þ: ð9Þ

For additional reflections, the unit polarization vectors can be chosen

arbitrarily as long as they satisfy the mutual orthogonality conditions.

Taking into account the inconsistency of conventional two-wave

definitions of � and � polarization with respect to the additional

reflections in the non-coplanar case, we introduce �- and �-polari-

zation terms by the following definition of the corresponding unit

polarization vectors:

siðx
0; y0; z0Þ ¼ si

�
1� cos �i cosh Ti

cosh Ti � cos �i

;�
tan � cos �i sinh Ti

cosh Ti � cos �i

;

�
sinh Tiðcos2 �� cos2 �iÞ

1=2

cos �ðcosh Ti � cos �iÞ

�
ð10Þ

qiðx
0; y0; z0Þ ¼ qi

�
�

sinh Tiðcos2 �� cos2 �iÞ
1=2

cosh Ti � cos �i

;

�
tan �ðcos2 �� cos2 �iÞ

1=2

cosh Ti � cos �i

;
cos �i cosh Ti � cos2 �

cos �ðcosh Ti � cos �iÞ

�
:

ð11Þ

Now, according to the accepted system of symbols (see Weckert &

Hümmer, 1997; Stetsko et al., 2004; Sheludko, 2004), we can write

down the expressions of polarization factors for ‘Umweg’ reflections

and �- and �- polarization states of incident (see the symbols in round

brackets) and diffracted (upper index) radiation:
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Figure 2
The two sets of mutually perpendicular coordinate circumferences on the surface of
the Ewald sphere constructed for Bragg angle � = 36�. Two of the four possible
solutions of equation (17) are pointed out as the reciprocal-lattice points H

ð�Þ

i and
H
ðþÞ

i on the surface. See explanations in the text.



P�umð�Þ ¼ ðr0 � qiÞðqi � rÞ þ ðr0 � siÞðsi � rÞ

¼
tan2 �ðcos2 �� cos2 �iÞ

ðcosh Ti � cos �iÞ
2 � 1; ð12Þ

P�umð�Þ ¼ ðr0 � qiÞðqi � pÞ þ ðr0 � siÞðsi � pÞ

¼ � tan2 �ðcos2 �� cos2 �iÞ
1=2

�
cos �i þ cos2 �ðsinh Ti � cosh TiÞ

ðcosh Ti � cos �iÞ
2

; ð13Þ

P�umð�Þ ¼ ðp0 � qiÞðqi � rÞ þ ðp0 � siÞðsi � rÞ

¼ tan2 �ðcos2 �� cos2 �iÞ
1=2

�
cos �i � cos2 �ðsinh Ti þ cosh TiÞ

ðcosh Ti � cos �iÞ
2

; ð14Þ

P�umð�Þ ¼ ðp0 � qiÞðqi � pÞ þ ðp0 � siÞðsi � pÞ

¼ � cos 2�

�
tan2 �ðcos4 �� 2 cos2 � cos �i cosh Ti þ cos2 �iÞ

ðcosh Ti � cos �iÞ
2 : ð15Þ

The above approach can have a wide spectrum of applications to

explain various behaviors of multiple diffraction events. In particular,

by combining the products of individual unit polarization vectors

(6)–(11) in pairs, we obtain analytical expressions of polarization

coefficients, which are involved in the system of fundamental equa-

tions of the dynamical theory of three-wave diffraction (see, for

example, Authier, 2003, equation 9.7).

Further, one can deduce from comparison of expressions (13) and

(14) that polarization states and intensity of mutually conjugate

three-wave reflections in the case of linearly polarized incident

radiation are, generally speaking, different because of the inequality

of the two polarization factors under consideration. At the same time,

it is easy to recognize from the parity properties of hyperbolic

functions that the intensities of such reflections in the case of un-

polarized incident radiation will be indistinguishable. This explains

the well known behavior of experimentally observed peaks.

Most interesting is the analysis of equation (15) for solving the

problem of the conditions of inverse asymmetry of three-wave peaks

in the case of �-polarized incident radiation (Juretschke, 1986;

Weckert & Hümmer, 1997; Stetsko & Chang, 1999; Sheludko, 2004).

In fact, by analogy to the treatment presented by Sheludko (2004) for

the symmetrical case, one obtains criteria for the sign change of the

P�um factor in the general case of three-wave diffraction:

P�umð�Þ ¼ cos2 �ið1þ tan4 �Þ þ cosh2 Tið1� tan2 �Þ

� 2 cos �i cosh Ti þ sin2 � ¼ 0: ð16Þ

By substitution of Ti = 0 in (16), which corresponds to the symme-

trical case of three-wave diffraction, one easily obtains the equation,

given by Sheludko (2004). Again, the substitution of ��i ¼ � in (16)

leads us to the conditions for the sign change of P�umð�Þ in the case of

coplanar three-wave diffraction:

T
ð�Þ

i;copl ¼ � arccosh
cos3 �i � sin3 �

cos 2�

� �
: ð17Þ

If the wavelength of radiation is fixed and the value of the Bragg

angle � is measured directly, from solving (16) which is a quadratic in

cos �i or cosh Ti [like equation (5) in Sheludko (2004)], one gets the

analytical form of various criteria similar to those discussed by

Juretschke (1986). The geometrical meaning of such criteria is illu-

strated in Fig. 2. Equation (16) describes two closed curves on the

surface of the Ewald sphere, as is shown in Fig. 2 for the particular

case � = 36�. If the equation is solvable for some value of �i (or Ti),

one obtains the unknown values of the second coordinate of the

intersection points. For example, for �i = 36�, corresponding to the

coplanar three-wave diffraction, one obtains from (17) a set of

solutions: T
ð�Þ

i 	 �0:33 and T
ðþÞ

i 	 �1:51. The two (positive) solu-

tions are represented in Fig. 2 by the fictive reciprocal-lattice points

H
ð�Þ

i and H
ðþÞ

i , lying on the surface of the Ewald sphere. The behavior

of the possible solutions of equation (16) is thus evident.

However, since the values of �i and Ti for a given three-wave

configuration are fixed by the crystal structure and cannot be changed

during the experiment, the spectral criteria of inverse asymmetry are

of more practical interest. One obtains such criteria by transforming

equation (16):

cos6 �� ð3þ cos 2�i � 2 cos �i cosh Ti þ cosh 2TiÞ cos4 �

þ ð2 cos2 �i þ cosh2 TiÞ cos2 �� cos2 �i ¼ 0; ð18Þ

from which it is easy to realize that the problem is reduced to the

elementary analytical problem of the determination of positive roots

of a cubic equation in cos2 � with well known coefficients.

In conclusion, we propose a model for analyzing the geometrical

conditions of multiple diffraction in the Renninger scanning experi-

ment. The same model is applied to the analytical description of the

polarization factors in the case of multiple diffraction. The analytical

expressions for some standard polarization states of incident and

diffracted radiation in the case of three-wave diffraction are consid-

ered.
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